Algebraic curves and the Gauss map of algebraic minimal surfaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Value Distribution Theoretical Properties of the Gauss Map of Pseudo-algebraic Minimal Surfaces

In this thesis, we study value distribution theoretical properties of the Gauss map of pseudo-algebraic minimal surfaces in ndimensional Euclidean space. After reviewing basic facts, we give estimates for the number of exceptional values and the totally ramified value numbers and the corresponding unicity theorems for them.

متن کامل

L_1 operator and Gauss map of quadric surfaces

The quadrics are all surfaces that can be expressed as a second degree polynomialin x, y and z. We study the Gauss map G of quadric surfaces in the 3-dimensional Euclidean space R^3 with respect to the so called L_1 operator ( Cheng-Yau operator □) acting on the smooth functions defined on the surfaces. For any smooth functions f defined on the surfaces, L_f=tr(P_1o hessf), where P_1 is t...

متن کامل

Coamoebas of Complex Algebraic Plane Curves and the Logarithmic Gauss Map

The coamoeba of any complex algebraic plane curve V is its image in the real torus under the argument map. The area counted with multiplicity of the coamoeba of any algebraic curve in (C∗)2 is bounded in terms of the degree of the curve. We show in this Note that up to multiplication by a constant in (C∗)2, the complex algebraic plane curves whose coamoebas are of maximal area (counted with mul...

متن کامل

μ-Bases of Algebraic Curves and Surfaces

Pisokas et Stellina Sideri. Grâcè a eux j'ai passé une année merveilleusè a Nice et j'espère que nous partagerons encore plein de bons moments ensemble. Finalement, je remercie de tout mon coeur ma m` ere Gerda et mon frère Christoph pour leur amour et leur soutien. Je leur serai toujours reconnais-sant pour tout ce qu'ils ont fait pour moi.

متن کامل

Arrangements of Curves and Algebraic Surfaces

We show a close relation between Chern and logarithmic Chern numbers of complex algebraic surfaces. The method is a “random” p-th root cover which exploits a large scale behavior of Dedekind sums and continued fractions. We use this to construct smooth projective surfaces with Chern ratio arbitrarily close to the logarithmic Chern ratio of a given arrangement of curves. For certain arrangements...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Differential Geometry and its Applications

سال: 2007

ISSN: 0926-2245

DOI: 10.1016/j.difgeo.2007.06.014